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ABSTRACT:  

Fractional order dynamic model could model various real 

materials more adequately than integer order ones and 

provide a more adequate description of many actual 

dynamical processes. Fractional order controller is 

naturally suitable for these fractional order models. In this 

paper, a 

fractional order PID controller design method is proposed 

for a class of fractional order system models. Better 

performance using fractional order PID controllers can be 

achieved and is demonstrated through two examples with 

a comparison to the classical integer order PID controllers 

for controlling fractional order systems. 

Index Terms—Fractional order calculus, fractional order 

controller, fractional order systems, PI
λ
D

μ
 controller. 

 

I. INTRODUCTION 

  The concept of extending classical integer order calculus to 

non-integer order cases is by no means new. For example, it 

was mentioned in [1] that the earliest systematic studies seem 

to have been made in the beginning and middle of the 19th 

century by Liouville, Riemann, and Holmgren. The most 

common applications of fractional order differentiation can be 

found in [2]. The concept has attracted the attention of 

researchers in applied sciences as well. There has been a surge 

of interest in the possible engineering application of fractional 

order differentiation. Examples may be found in [3] and [4]. 

Some applications including automatic control are surveyed in 

[5].  

      In the field of system identification, studies on real 

systems have revealed inherent fractional order dynamic 

behavior. The significance of fractional order control is that it 

is a generalization of classical integral order control theory, 

which could lead to more adequate modeling and more robust 

control performance. Reference [6] put forward simple tuning 

formulas for the design of PID controllers. Some MATLAB 

tools of the fractional order dynamic system modelling, 

control and filtering can be found in [13]. Reference [7] gives 

a fractional order PID controller by minimizing the integral of 

the error squares. Some numerical examples of the fracti 

controller was designed to ensure that the closed-loop system 

is robust to gain variations and the step responses exhibit an 

iso-damping property. For speed control of two-inertia 

systems, some experimental results were presented in [12]by 

using a fractional order PI
α
D controller. A comparative 

introduction of four fractional order controllers can be found 

in [10]. 

In most cases, however, researchers consider the fractional 

order controller applied to the integer order plant to enhance 

the system control performance. Fractional order systems 

could model various real materials more adequately than 

integer order ones and thus provide an excellent modeling tool 

in describing many actual dynamical processes. It is 

intuitively true, as also argued in [11], that these fractional 

order models require the corresponding fractional order 

controllers to achieve excellent performance. In this paper, a 

fractional order PID controller is used to control a class of 

fractional order systems. A fractional order PID controller 

design method is proposed with two illustrative examples. 

   The remaining part of this paper is organized as follows: in 

Sec. II, mathematical foundation of fractional order controller 

is briefly introduced; in Sec. III, the fractional order PID 

controller and its property are presented; in Sec. IV, the 

fractional 

order PID controller parameter setting is proposed with 

specified gain and phase margins; in Sec. V, two examples are 

presented to illustrate the superior performance achieved by 

using fractional order controllers. Finally, conclusions are 

drawn in Sec. VI.onal orders were presented in [8]. In [9], a 

PI
α
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II. A BRIEF INTRODUCTION TO FRACTIONAL ORDER 

CALCULUS 

A commonly used definition of the fractional differ-integralis 

the Riemann-Liouville definition 

 

for m − 1 < α < m where Γ(・) is the well-known 

Euler’s gamma function. An alternative definition, based on 

the concept of fractional differentiation, is the Gr¨unwald- 

Letnikov definition  given by 

 One 

can observe that by introducing the notion of fractional order 

operator 
aDα

t f(t), the differentiator and integrator can be 

unified. Another useful tool is the Laplace transform. It is 

shown in [14] that the Laplace transform of an n-th derivative 

(n ∈ R+) of a signal x(t) relaxed at t = 0 is given by:L_Dnx(t) 

_= snX(s). So, a fractional order differential equation, 

provided both the signals u(t) and y(t) are relaxedat t = 0, can 

be expressed in a transfer function form (t − τ )1−(m−α) dτ (1)A 

simple model of a DC motor driving an inertial load shows the 

angular rate of the load,𝜔(𝑡), as the output and applied 

voltage, 𝑣𝑎𝑝𝑝 (𝑡), as the input. This picture shows a simple 

model of the DC motor. In this model, the dynamics of the 

motor itself are idealized; for instance, the magnetic field is 

assumed to be constant. The resistance of the circuit is 

denoted by R and the self-inductance of the armature by L. 

The important thing here is that with this simple model and 

basic laws of physics, it is possible to develop differential 

equations that describe the behavior of this electromechanical 

system. In this, the relationships between electric potential and 

mechanical force are Faraday's law of induction and Ampere’s 

law for the force on a conductor moving through a magnetic 

field. 

 

2.1) Mathematical Derivation: The torque𝜏, seen at the shaft 

of the motor is proportional to the current i induced by the 

applied voltage, 

𝜏 𝑡 =  𝐾𝑚 𝑖 𝑡 …… . . (29) 

Where𝐾𝑚 , the armature constant, is related to physical 

properties of the motor, such as magnetic field strength, the 

number of turns of wire around the conductor coil, and so on. 

The back (induced) electromotive force,𝑣𝑒𝑚𝑓 , is a voltage 

proportional to the angular rate𝜔  seen at the shaft, 

𝑣𝑒𝑚𝑓  𝑡 =  𝐾𝑏𝜔 𝑡 …… . . (30) 

Where𝐾𝑏 , the emf constant, also depends on certain physical 

properties of the motor. 

The mechanical part of the motor equations is derived using 

Newton's law, which states that the inertial load J times the 

derivative of angular rate equals the sum of all the torques 

about the motor shaft. The result is this equation, 

𝐽
𝑑𝜔

𝑑𝑡
=  −𝐾𝑓𝜔 𝑡 +  𝐾𝑚 𝑖 𝑡 …… . . (31) 

Where 𝐾𝑓𝜔 is a linear approximation for viscous friction. 

Finally, the electrical part of the motor equations can be 

described by 

 

 

Finally, the electrical part of the motor equations can be 

described by 

𝑣𝑎𝑝𝑝  𝑡 −  𝑣𝑒𝑚𝑓  𝑡 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 𝑡 …… . .  32  

Substituting for the back emf 

𝑣𝑎𝑝𝑝  𝑡 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 𝑡 + 𝐾𝑏𝜔 𝑡 …… . (33) 

This sequence of equations leads to a set of two differential 

equations that describe the behavior of the motor, the first for 

the induced current, 

𝑑𝑖

𝑑𝑡
=  −

𝑅

𝐿
𝑖 𝑡 − 

𝐾𝑏

𝐿
𝜔 𝑡 +  

1

𝐿
𝑣𝑎𝑝𝑝  𝑡 …… . . (34) 

And the second for the resulting angular rate, 

𝑑𝜔

𝑑𝑡
=  −

1

𝐽
𝐾𝑓𝜔 𝑡 + 

1

𝐽
𝐾𝑚 𝑖 𝑡 ……… . (35) 

 

2.2) State-Space Equations for the DC Motor: 

Given the two differential equations (34), (35), you can now 

develop a state-space representation of the DC motor as a 

dynamic system. The current i and the angular rate 𝜔are the 

two states of the system. The applied voltage,𝑣𝑎𝑝𝑝 , is the input 

to the system, and the angular velocity 𝜔  is the output. 

𝑑

𝑑𝑡
 
𝑖
𝜔

 =  

 
 
 
 −

𝑅

𝐿
−

𝐾𝑏

𝐿
𝐾𝑚

𝐽
−

𝐾𝑓

𝐽  
 
 
 
 
𝑖
𝜔

 +  
1

𝐿
0

 𝑣𝑎𝑝𝑝  𝑡 …… . (36) 

𝑦 𝑡 =   0 1  
𝑖
𝜔

 +  0 𝑣𝑎𝑝𝑝  𝑡 …… . . (37) 

The above equations can be converted write into state space 

equations format. 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢 …… . (38) 

𝑦 = 𝐶𝑥 …… (39) 

where x is state variable, x = (i, v)
T
, u, control input, u = v, and 

y, measurement output, y = w. 

A=[-R/L -Kb/L; Km/J -Kf/J]; 
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B=[1/L; 0]; 

C=[0 1]; 

D=[0];  

Fig.2 shows the simulation diagram of simplified dc motor 

model. From fig.2  

 

we know this is a second order linear system with single input 

and single output. 

III. DESIGN OF ADAPTIVE CONTROLLER 

In this section a model reference adaptive controller 

will be designed by using Lyapunov’s stability theory, which 

can keep the motor dynamic performance consistent with the 

reference model and make the system insensitive to parameter 

variations and external disturbance, and the steady error goes 

to zero. The design steps are arranged as follows. 

First, a proper reference model is selected according 

to the performance index. Then the controller structure is 

determined and the error equation is deduced. Finally, a 

Lyapunov function is chosen and is used to develop parameter 

adaptation law, which can make the error approximate to zero. 

  Since the plant model has the format as eqn. (38), we 

assume the reference model as follows. 

𝑑𝑥𝑚

𝑑𝑡
= 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑐 …… . (40) 

 

Then select a control law as eqn. (41). 

𝑢 = 𝜃1 𝑢𝑐 + 𝜃2𝑥 …… (41) 
 

Thus the model reference adaptive system is shown in fig.3. 

Now the state equation of the closed loop system has been 

changed to the following equation. 
𝑑𝑥

𝑑𝑡
=  𝐴 − 𝐵𝜃2 𝑥 + 𝐵𝜃1𝑢𝑐  

 
𝑑𝑥

𝑑𝑡
=  𝐴𝑐 𝜃 𝑥 +  𝐵𝑐 𝜃 𝑢𝑐 … . (42) 

 

where the parameters in matrices 𝜃1 and 𝜃2 can be selected in 

any way, there can also exist some constraints between them.  

 

 
Fig. 3 Block diagram of MRAC 

 

 

We suppose the closed loop system can be described with eqn. 

(42), where matrices Ac and Bc depend on the parameter, 𝜃 

and 𝜃 is a certain combination of  𝜃1 and 𝜃2. If eqn. (42) is 

equivalent to eqn. (40) at any time, then the original system 

can follow the reference model completely. A sufficient 

condition is there exist a parameter 𝜃0 that makes eqn. (43) 

hold. 

𝐴𝑐 𝜃
0 =  𝐴𝑚  

𝐵𝑐 𝜃
0 =  𝐵𝑚 … . . (43) 

Here we introduce error e, which is defined in eqn.(44). 

𝑒 = 𝑥 − 𝑥𝑚 … . (44) 
 

By subtracting eqn.(40) from eqn.(38), we get 
𝑑𝑒

𝑑𝑡
=  

𝑑𝑥

𝑑𝑡
− 

𝑑𝑥𝑚

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢 − 𝐴𝑚𝑥𝑚 − 𝐵𝑚  𝑢𝑐 … . (45) 

Adding and subtracting a term Amx at right – hand side of 

eqn.(45), we will get 
𝑑𝑒

𝑑𝑡
=  𝐴𝑚𝑒 +  𝐴 − 𝐴𝑚 −  𝐵𝜃2 𝑥 +  𝐵𝜃1 − 𝐵𝑚  𝑢𝑐  

𝑑𝑒

𝑑𝑡
=  𝐴𝑚𝑒 +  𝐴𝑐(𝜃) − 𝐴𝑚  𝑥 +  𝐵𝑐(𝜃) − 𝐵𝑚  𝑢𝑐  

𝑑𝑒

𝑑𝑡
=  𝐴𝑚𝑒 + 𝜑 𝜃 − 𝜃0 … . . (46) 

The last equality of above equation is derived when extract 

model tracking condition is met. To deduce the parameter 

tuning law, we introduce a function V(e,𝜃). 

𝑉 𝑒, 𝜃 =
1

2
∗  𝛾𝑒𝑇𝑃𝑒 +  𝜃 − 𝜃0 𝑇 𝜃 − 𝜃0  … . . (47) 

 
where P is a positive definite matrix. 𝑉 𝑒, 𝜃  is obviously a 

positive definite function. If its first order derivative to time is 

not positive definite, then V is a Lyapunov function. Now we 

solve the derivative of V to time t. 

 
𝑑𝑉

𝑑𝑡
=  −

𝛾

2
𝑒𝑇𝑄𝑒 +  𝛾 𝜃 − 𝜃0 𝜑𝑇𝑃𝑒 + (𝜃 − 𝜃0)𝑇  

𝑑𝜃

𝑑𝑡
 

𝑑𝑉

𝑑𝑡
=  −

𝛾

2
𝑒𝑇𝑄𝑒 +  𝜃 − 𝜃0 𝑇   

𝑑𝜃

𝑑𝑡
+ 𝛾𝜑𝑇𝑃𝑒 … . (48) 

where Q is a positive definite matrix, which meets the 

following equation. 

𝐴𝑚
𝑇𝑃 + 𝑃𝐴𝑚 =  −𝑄 … . (49) 
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According to Lyapunov’s stability theory, as long as Am is 

stable, there always exist such positive definite matrices P and 

Q. 

If we choose the parameter tuning law as follows 
𝑑𝜃

𝑑𝑡
=  −𝛾𝜑𝑇𝑃𝑒 … (50) 

Then we will get 
𝑑𝑉

𝑑𝑡
=  −

𝛾

2
𝑒𝑇𝑄𝑒 … . (51) 

 

i.e., the derivative of Lyapunov function V to time t is half 

negative definite. According to Lyapunov’s stability theorem, 

now the output error between real system and reference model 

will approximate to zero, and the whole system will be 

asymptotically stable. Therefore, eqn.(50) is the Lyapunov’s 

stability theory-based parameter tuning law for the model 

reference adaptive system. 

 

IV. SIMULATION RESULTS 

 

The parameters of the DC motor are listed in table 1. 

Armature resistance R(ohm) 7.72 

Armature inductance L(H) 0.16273 

Back emf constant Kb 1.25 

Mechanical inertia J(Kg/m
2
) 0.0236 

Friction coefficient Bf 

(N.m./rad/sec.) 

0.003 

Torque constant Kt 1.25 

Rated load  FL(Nw.mt) 1.2 to 2.4 

Speed 𝜔 (rev/min) 1500 

Power P(Kw) 0.5 

 

In this example, we select the following reference model after 

several trial-and-errors. 

𝐺𝑚  𝑠 =  
900

𝑠2 + 47.58𝑠 + 900
 

The reference model has small overshoot. Assume that output 

of reference model is ym and input is command signal uc. 

The error expression is 

𝑒 + 47.58𝑒 +  413 + 325.5𝜃2 𝑦 − 900𝑦𝑚

=  325.5𝜃1 − 900 𝑢𝑐  

 𝑒  + 47.58𝑒 − 900𝑒  +  325.5𝜃2 − 487 𝑦

+  900 − 325.5𝜃1 = 0 

The liapunov’sfunction is chosen as 

𝑣 =  
1

2
𝑒2 + 

1

𝛾
  325.5𝜃2 − 487 2 +  900 − 325.5𝜃2 

2  

 So the adaptive law as  

𝑑𝜃1

𝑑𝑡
=  −

𝑢𝑐 𝑒 𝛾

475.8 ∗ 325.5 ∗ 2
 

𝑑𝜃2

𝑑𝑡
=  

𝑦 𝑒 𝛾

475.8 ∗ 325.5 ∗ 2
 

The simulation results are shown in figs.4 to 9, respectively 

Fig.4 Step response waveform of DC motor. 

 

 
Fig.5 Zoom of the response waveform when disturbance occur 

at 15 sec 
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Fig.6 The waveform of output error between the MRAS and 

process 

 

 
Fig.7 Control input of the MRAS 

Fig.8 Tuning of the parameter 𝜃1 of adaptive control law. 

 

Fig.9 Tuning of the parameter 𝜃2 of adaptive control law. 

4.2) Comments: 

               In simulation, the system ability of rejecting external 

disturbance is studied. First, when the system is under zero 

initial condition, the motor can follow the reference model 

perfectly starting from rest to steady state as in fig 4. Then, 

when the time is 15 sec. the load FL suddenly changes from 0 

to full load (2.5 N). At this time the model reference adaptive 

system suffers slight oscillation, but it can be stable very 

soon.Fig.5 is the zoom of response curve when the load 

disturbance is exerted. The MRAS has little deflection from 

the steady state with small magnitude of oscillation, but it is 

stabilized very soon. The output error between MRAS and 

reference model during the whole dynamic process is 

illustrated in fig.6. From this figure we can see the error 

occurs mainly at the startup stage and the settling stage while 

external disturbance is exerted. The error goes to zero when 

the system is at steady state. Fig.7 presents the input signal of 

MRAS, i.e., the motor input voltage. Figs.8 and 9 give the 

updating process of parameters 𝜃1and 𝜃2of the adaptive 

control law, respectively. The control law can automatically 

adjust itself when external disturbance is exerted to the 

system. 

 

V. Conclusion 

                In this report simplified mathematical model of 

permanent magnet linear motor is developed. Then model 

reference adaptive controller has been designed based on the 

liapunov’s stability theory. Simulation results shows that the 

liapunov’s stability theory based model reference adaptive 

system is more robust and stable, which has better dynamic 

performance and stronger disturbance rejecting ability. The 

adaptive control law is independent of plant parameters and 

easy to implement. So this method is effective.  
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